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Abstract: The author presents the design and analysis of low-complexity symbol timing error detectors (TEDs) for timing
synchronisation in quasi-orthogonal space–time block code (QOSTBC) receivers. The estimators operate on data symbols and
approximate decision variables, producing timing error measurements which are shown to be robust to channel fading. In
evaluating the detector S-curve for the general form of the estimator, the author shows that the result is independent of the
constellation rotation angle employed by the code. The expressions for the estimation error variance and TED signal-to-noise
ratio are also obtained, with the analysis carried out under the assumptions of perfect data and channel knowledge at the
receiver. Through system simulations, the effects of decision errors on the detector characteristics are examined, and the
overall system performance is evaluated, where the proposed TEDs are incorporated into the receiver timing loop. Receivers
with perfect channel knowledge and pilot-based channel estimation are considered. Symbol error rate results show timing
synchronisation loss of less than 0.5 dB for a receiver with perfect channel information. In addition, it is shown that the
receiver is able to track the timing variations two orders of magnitude faster than required by the present-day hardware oscillators.
1 Introduction

It is well known that the receiver’s ability to synchronise
the timing epoch is critical to the overall performance of
multiple-input multiple-output (MIMO) systems [1–6]. A
number of papers dealing with timing synchronisation in
MIMO receivers (see e.g. [2–4]) have dealt with timing
acquisition by virtue of the oversampled log-likelihood
function (LLF) derived from orthogonal training sequences.
In contrast to these methods, a very low-complexity
approach to timing error tracking in orthogonal space–time
block coding (OSTBC) receivers was presented in [7]. The
authors of [7] have shown that a low-complexity function
of data symbols (or decisions) and the OSTBC decision
variables can be used to obtain a measurement of the
symbol timing error that is robust to the channel state.
In this paper we extend the results of [7] by considering

quasi-OSTBC (QOSTBC) and rotated-QOSTBC
(φ-QOSTBC) systems. In contrast to OSTBC, where the
simplified detection process provided decision variables
used for timing error detector (TED) design and analysis,
the detection process for QOSTBC involves the
optimisation of a maximum likelihood (ML) metrics, which
does not allow a similar approach. As a result, for the
purpose of TED, we consider the use of approximate
decision variables, derived from OSTBC detection. This
enables a systematic TED design as well as S-curve and
estimation error variance analysis for QOSTBC. Similar to
[7], the analysis assumes correct data decisions and perfect
channel knowledge at the receiver. The effects of decision
errors and channel estimation errors do not allow for
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analytical tractability and thus these are evaluated via
system simulations.
The contributions of this paper are as follows:

† By considering approximate decision variables, we show
that an estimate of the timing error for QOSTBC can be
formed by a linear combination of data and decision
variable products. Consequently, in contrast to ML-based
optimisation techniques, which require computationally
intensive likelihood function estimation followed by the
search for its maximum, estimators presented here offer
very low computational complexity.
† We derive the S-curve for the general form of the
estimator, showing that it is independent of the rotation
angle φ used in the QOSTBC.
† We obtain semi-analytical expressions for the estimation
error variance and the TED SNR.
† Symbol-error-rate (SER) performance and the timing error
tracking range is evaluated by means of system simulations
and compared to the OSTBC TED results reported in [7].
We evaluate the effects of data decision and channel
estimation errors for a pilot-symbol-based estimator.

The remainder of this paper is organised as follows. System
overview is described in Section 2, while Section 3 presents
the theory of TED design and analysis for QOSTBC.
System simulations evaluating the performance of
QOSTBC receivers incorporating the designed TED are
presented in Section 4. We conclude with a summary in
Section 5.
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2 System overview

Consider an OSTBC system with Nt transmit and Nr receive
antennas, where the transmitter encodes Ns information
symbols over Nt antennas in Nc time slots, resulting in a
code rate of R =Ns/Nc. Using boldface notation for
matrices, we denote the lth Nt ×Nc code block by Xl, and
its (i, k)th entry by xi(lNc + k). Note that l is the block
index, k = 0, …, Nc− 1 is the time slot within the block and
i = 1, …, Nt is the transmit antenna index. One of the
advantages of OSTBC systems lies in the fact that if the
columns of Xl are orthogonal, the receiver complexity can
be greatly reduced by decoupling the decoding process into
Ns independent operations [8]. It has been shown, however,
that Nt = 2 is the only configuration for which a full rate
OSTBC with a complex alphabet is possible, with the
maximum rate for Nt > 2 is R = 3/4 [8]. In order to achieve
rate one codes for Nt > 2, the property of full code
orthogonality must be relaxed, resulting in quasi-OSTBC.
An example of a Nt = 4 antenna QOSTBC is given by [9]

X(q4a) =
a1 −a∗2 −a∗3 a4
a2 a∗1 −a∗4 −a3
a3 −a∗4 a∗1 −a2
a4 a∗3 a∗2 a1

⎡
⎢⎢⎣

⎤
⎥⎥⎦ (1)

where am denotes the data symbols. While offering an
encoding rate of one, QOSTBCs have been shown [9] to
provide only half of the maximum diversity order. To
address this shortcoming, a subset of the data symbols can
be drawn from a constellation rotated by an angle φ,
resulting in a φ-QOSTBC system [9]. Considering, without
loss of generality, the code in (1), we have

ãm = am, m = 1, 2
ame

jf, m = 3, 4

{
ãm = am, m = 1, 2

ame
jf, m = 3, 4

{
(2)

Using a block index l, the encoding process for the code Xl

can be expressed by [10]

Xl =
∑Ns−1

m=0

< ãm,l
{ }

Am + iℑ ãm,l
{ }

Bm (3)

where the operators <{·} and ℑ{·} return the real and
imaginary parts of their arguments, respectively, and Am

and Bm are integer code matrices of dimension Nt × Nc.
Following data encoding, the pulse shaping, which is split

between the transmitter and the receiver, is performed using
root raised cosine (RRC) filters. The combined Nyquist
raised cosine pulse is represented by g(t). We assume a
frequency-flat Rayleigh fading channel modelled by a Nr ×
Nt matrix H. Its components, denoted by hji, correspond to
the state of the channel from ith transmit to jth receive
antenna and are assumed to be independent and identically
distributed (iid) with a U-shaped power spectrum of
isotropic scattering and maximum symbol-normalised
Doppler frequency of fDT, assumed to be known.
The received signal is sampled with a timing error ε

assumed to be equal on all branches and constant for the
duration of the one code block Xl. Following the model in
[7], we consider 1 = t− t̂ where τ is the timing offset at
the receiver and t̂ is the timing correction applied by the
timing synchronisation algorithm. Assuming the channel
fading is sufficiently slow, such that hji(tn)≃ hji(nT) = hji[n],
2
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the matched filter samples at receive antenna j are given by

yj[n] =
∑Nt

i=1

h ji[n]
∑
n′

xi n
′[ ]g nT − n′T + 1
( )+ hj[n] (4)

where ηj[n] denotes the samples of the coloured noise
resulting from match filtering. Using the same approach as
in [7], one can show that the lth Nr ×Nc received matrix Yl

is given by

Yl = Hl

∑
n

Xl+nG1,n + Nl (5)

where Hl and Nl denote the channel state and noise matrices,
respectively, and Gε,n is a Nc ×Nc Toeplitz matrix given by

G1,n =

g1−nNc
g1−nNc+1 g1−nNc+2 · · ·

g1−nNc−1 g1−nNc
g1−nNc+1

. .
.

g1−nNc−2 g1−nNc−1 g1−nNc

. .
.

..

. . .
. . .

. . .
.

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

where g1n W g(nT + 1). The summation in (5) encompasses
the effects of intersymbol interference due to ε, where
Gε, n→ 0 for large |n|.
The decoding is accomplished by means of optimisation of

a ML metric. Owing to the partial orthogonality properties of
the QOSTBCs, the ML metric can be decomposed into a sum
of independent terms. Considering once again the code in (1),
the metric is given by [9]

M = f14 s1, s4
( )+ f23 s2, s3

( )
(6)

where sn denotes the nth decision variable. The expressions
for f14(s1, s4) and f23(s2, s3) are derived in [9].

2.1 Channel estimation

In addition to the receiver with perfect channel knowledge,
we evaluate the effects of channel estimation errors for a
pilot symbol assisted modulation (PSAM) receiver, as
described in [2]. The data are divided into frames consisting
of known orthogonal pilot blocks, followed by a sequence
of OSTBC data code blocks. The received sequence is then
decimated to recover the pilot symbols, which are used to
obtain the channel estimates for the pilot slots. These are
subsequently interpolated to obtain channel fading values
for the data portion of each frame.

3 Timing error detector

3.1 Timing error detector design

It was shown in [7] that for an OSTBC system a measurement of
ε can be obtained using data symbols (or decisions) and decision
variables. The average of the TED output represents the timing
error measurement (TEM), referred to as the S-curve. As
described in [7], the aim of the design is to obtain, or closely
approximate, a TEM in the form of 1̂ = g1−1 − g11. This
expression, referred to as the difference of threshold crossings,
returns a linear measurement of ε for small values of |ε|. We
now show that a similar method can be used to design TEDs
for QOSTBC and φ-QOSTBC encoding.
IET Commun., pp. 1–11
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We note that an OSTBC receiver utilises explicit expressions

for the decision variables, which were subsequently used for
TEM estimation in [7]. Owing to the fact that the QOSTBC
ML decoding in (6) cannot be fully decoupled, no explicit
exact decision variables are available for TED design. Thus,
in what follows, for the purpose of timing error estimation,
we use approximate decision variables which are analogous
to the OSTBC expressions, that is

z̃m = ‖H‖−2 < tr YHHAm

( ){ }− jℑ tr YHHBm

( ){ }[ ]
(7)

One can show that z̃m can be expressed as the decision variable
sm with a perturbation dzm , that is

z̃m = sm + dzm (8)

where, for the example code in (1), the perturbation terms dzm
are given by [11, Chapter 6]

dz1 = 2‖Hl‖−2
∑Nr

j=1
< h j1h

∗
j4 − h∗j2h j3

( )
s4

dz2 = −2‖Hl‖−2
∑Nr

j=1
< h j1h

∗
j4 − h∗j2h j3

( )
s3

dz3 = −2‖Hl‖−2
∑Nr

j=1
< h j1h

∗
j4 − h∗j2h j3

( )
s2

dz4 = 2‖Hl‖−2
∑Nr

j=1
< h j1h

∗
j4 − h∗j2h j3

( )
s1

We note that the numerator of dzm contains only cross product
terms in hji, whereas the denominator contains magnitude terms.
We will show that through the iterative operation of the receiver
timing loop, the effect of dzm will be small, allowing for a valid

TEM. While the variables z̃m are used for the purpose of TEM
estimation, the data decisions sm are obtained from (6). Finally,
the use of (7) allows a semi-analytical derivation of the TED
mean and estimation variance.
Similarly to the approach in [7], we consider a general

expression for the TED output given by an arbitrary linear
combination of products of data symbols and decision
variable, that is

1̂ = <
∑
k

ak ãna,k z̃ma,k
+ bk ã

∗
nb,k

z̃mb,k

( )
(9)

with z̃m given by (7). The TED design process aims to select
the parameter set

S = ak , bk , ma,k , na,k , mb,k , nb,k

{ }
(10)

such that the S-curve, that is the average of the TED in (9), is
in the form of a difference of threshold crossings TEM
g1−1 − g11. The TED is the input to the timing loop which
acts to average (9).
We evaluate the expectation of (9), beginning with the

expectation over data and the noise conditioned on the
channel response, followed by the expectation over H. In
order to maintain compact notation, we denote the
expectation conditioned on H by EH{·}, while the expectation
over H will be denoted by EH{·}. Total expectation is thus
given by E{·} = EH{E

H{·}}, where EH{·} is always computed
by simulation as the argument is too complex for analysis.
Adapting the approach in [7] we evaluate < EH ãnz̃m

{ }{ }
and < EH ã∗nz̃m

{ }{ }
in (9). Assuming E aRna

R
m

{ } = 0 for m≠
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n and E aRna
I
n

{ } = 0, we can express < EH ãnz̃m
{ }{ }

as

< EH ãnz̃m
{ }{ } = ‖H‖−2tr AmG

H
1 E < ãRn X̃

H
( ){ }[{

× < HHH
( )− E jℑ ãInX̃

H
( ){ }

× ℑ HHH
( )]− jBmG

H
1 E jℑ ãInX̃

H
( ){ }[

× < HHH
( )+ E < ãRn X̃

H
( ){ }

ℑ HHH
( )]}

(11)

Components of (11) can be further evaluated using (3), where
one can show that

< E ãRn X̃
H

{ }{ }
= < E ãRn

∑Ns−1

m=0

ãRmA
H
m − jãImB

H
m

{ }{ }

= E aRn cos (f)− aIn sin (f)
( )2{ }

AH
n

= r2A
H
n (12)

where φ is the rotation angle in (2). In (12) we have assumed

E
{
aRn
( )2} = E

{
aIn
( )2} = r2, where ρ2 is a constellation

dependent constant, defined by

rp WE aRi
( )p{ }

= E aIi
( )p{ }

(13)

Using the same approach, one can show that

ℑ E ãInX̃
H

{ }{ }
= −r2B

H
n (14)

Substituting (12) and (14) into (11) and after some algebraic
manipulation, taking the real part of (11) results in

< EH ãnz̃m
{ }{ } = r2‖H‖−2tr

× AmG
H
1 A

H
n − BmG

H
1 B

H
n

( )< HHH
( ){ }

(15)

Following the development analogous to that in (11)–(15),
one can show that EH

{
ãnz̃

∗
m

}
is given by

< EH ã∗nz̃m
{ }{ } = r2‖H‖−2

× tr AmG
H
1 A

H
n + BmG

H
1 B

H
n

( )< HHH
( ){ }

(16)

We can note that the expressions in (15) and (16) are
independent of φ. Combining, we have that the S-curve,
conditioned on H, for a φ-QOSTBC TED in (9), is given
by an expression identical to that obtained for OSTBCs in
[7], that is

EH 1̂{ } = r2 H‖ ‖−2tr G< HHH
( ){ }

(17)

where the matrix Γ, dependent on S in (10), is given by

G =
∑

k
ak Ama,k

GH
1 A

H
na,k

− Bma,k
GH

1 B
H
na,k

( )[
+bk Amb,k

GH
1 A

H
nb,k

+ Bmb,k
GH

1 B
H
nb,k

( )]
(18)
3
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The equivalence of (17) and (18) to the expressions obtained
for OSTBC in [7], leads to the conclusion that the TED design
conditions for OSTBC are applicable to QOSTBC. Thus,
based on the results in [7], if Γ satisfies

G = f G1

( )
I + D

where

i. f (Gε) is a scalar function of Gε returning a difference of
threshold crossings (TEM) approximating g1−1 − g11
ii. D is an antisymmetric matrix, then

EH 1̂{ } = r2f G1

( )
(19)

Since (19) is independent of H, such a TED is robust [7]. If
only condition (i) is satisfied, then

EH 1̂{ } = r2f G1

( )+ d1̂ (20)

where d1̂, dependent on H, is referred to as the TEM bias,
which can be shown to be given by

d1̂ = r2 H‖ ‖−2
∑Nt

m=1

∑Nt

i=1i=m

∑Nr

j=1

dmi< h∗jih jm

( )
(21)

where dmi denotes the (m, i)th entry of D. The numerator of
(21) contains only channel cross product terms, whereas the
denominator contains magnitude terms from ||H||2. Because
of the averaging operation of the timing loop, the effect of
the bias term will be small, resulting in a quasi-robust TED.
For a robust TED, (19) does not require averaging over the
H, and thus (19) represents the TED S-curve. For a
quasi-robust TED, the S-curve is obtained by computing the
expectation of the bias d1̂ in (20) over the channel fading
matrix H, that is

E 1̂{ } = r2f G1

( )+ EH d1̂
{ }

(22)

where the expectation EH d1̂
{ }

is evaluated by simulation.
4
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3.2 Estimation error variance

We evaluate the estimation error variance of the TED in (9),
given by

s2
1̂ = E 1̂2

{ }− E 1̂{ }[ ]2 (23)

Examining (9), one notes that the solution to E 1̂2
{ }

can be
obtained by considering the expectations EH

{
ãRi ã

R
j z̃

R
m z̃

R
n

}
,

EH
{
ãIi ã

I
j z̃

I
mz̃

I
n

}
and EH

{
ãRi ã

I
j z̃

R
m z̃

I
n

}
, the solution of which is

deferred to Appendix. Following the derivation, the
expression for EH

{
ãRi ã

R
j z̃

R
m z̃

R
n

}
is given by

EH ãRi ã
R
j z̃

R
m z̃

R
n

{ }
= ‖H‖−4tr r22F̃

RR
ijmn + r2

N0

2
D̃

RR
ijmn

{ }
(24)

where F̃
RR
ijmn is given by (see (25))

and

D̃
RR
ijmn =

0 i = j
Am ⊗ An

( )
LN V′

RR +V′
II

( )
i = j

{
(26)

where Ωij and V ′
ij are defined in Appendix by (51) and (63),

respectively. The NcNc ×NrNr matrix ΛN is given by (62). In
(25), we have defined constellation-dependent constants

r′′f W E ãRi
( )3

ãIi
( ){ }

r′2f W E ãRi
( )2

ãIi
( )2{ }

r4f W E ãRi
( )4{ }

which are evaluated for M-PSK constellations in [11].

Similarly, the solution to EH
{
ãIi ã

I
j z̃

I
mz̃

I
n} is given by

EH ãIi ã
I
j z̃

I
mz̃

I
n

{ }
= ‖H‖−4tr r22F̃

II
ijmn + r2

N0

2
D̃

II
ijmn

{ }
(27)

where (see (28))
F̃
RR
ijmn =

AmG
H
1,0 ⊗ AnG

H
1,0

( )
AH
j ⊗ AH

i + AH
i ⊗ AH

j

( )
VRR i= j

AmG
H
1,0 ⊗ AnG

H
1,0

( )× r4f
r22

− 1

( )
AH
i ⊗ AH

i

( )
VRR + r′2f

r22
− 1

( )
BH
i ⊗ BH

i

( )
VII

[

+ r′′f
r22

AH
i ⊗ BH

i

( )
VRI + BH

i ⊗ AH
i

( )
VIR

( )]
+ ∑l

∑Ns−1
k=0 AmG

H
1,l ⊗ AnG

H
1,l

( )× (AH
k ⊗ AH

k )VRR + BH
k ⊗ BH

k

( )
VII

[ ]
i = j

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(25)

F̃
II
ijmn =

BmG
H
1,0 ⊗ BnG

H
1,0

( )
BH
j ⊗ BH

i + BH
i ⊗ BH

j

( )
VRR i= j

BmG
H
1,0 ⊗ BnG

H
1,0

( )× r4f
r22

− 1

( )
BH
i ⊗ BH

i

( )
VRR +

r′2f
r22

− 1

( )
AH
i ⊗ AH

i

( )
VII

[

− r′′f
r22

AH
i ⊗ BH

i

( )
VIR + BH

i ⊗ AH
i

( )
VRI

( )]
+∑l

∑Ns−1
k=0 BmG

H
1,l ⊗ BnG

H
1,l

( )× BH
k ⊗ BH

k

( )
VRR + AH

k ⊗ AH
k

( )
VII

[ ]
i = j

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(28)
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and

D̃
II
ijmn =

0, i = j
Bm ⊗ Bn

( )
LN V′

RR +V′
II

( )
, i = j

{
(29)

Finally, the expectation EH ãRi ã
I
j z̃

R
m z̃

I
n

{ }
is given by

EH ãRi ã
I
j z̃

R
m z̃

I
n

{ }
= ‖H‖−4tr mfF̃

RI
ijmn

{ }
(30)

where

F̃
RI
ijmn = AmG

H
1,0 ⊗ BnG

H
1,0

( )
× AH

i ⊗ BH
j

( )
VRR − BH

j ⊗ AH
i

( )
VII

( )
(31)

and μφ is defined as

mf = r22, i = j
r′2f, i = j

{

Using the general results given by (24), (27) and (30), the
estimation variance for a particular TED is obtained using
(23) with E 1̂{ } computed via (17) and (18). Combining, we
obtain

E 1̂2
{ } = EH ‖H‖−4tr r22SF̃ + r2

N0

2
SD̃

{ }{ }
(32)

The expectation EH{·} must be carried out by simulation, as
will be done in Section 3.4. The quantities SF̃ and SD̃

correspond to the linear combinations of F̃
RR
ijmn, F̃

II
ijmn, F̃

RI
ijmn

(defined by (25), (28) and (31)) and D̃
RR
ijmn, D̃

II
ijmn (defined by

(26) and (29)), respectively, as determined by the
polynomial expansion of E 1̂2

{ }
for a particular TED.

Comparing the estimation error variance results with those
obtained in [7] for OSTBC TEDs, one can notice that the

expressions for F̃
RR
ijmn and F̃

II
ijmn in (25) and (28) contain

additional terms resulting from the constellation rotation
angle φ.
Unlike the S-curve for φ-QOSTBC, the estimation

variance is a function of the rotation angle φ. This is,

however, only the case for F̃
RR
ijmn, F̃

II
ijmn, F̃

RI
ijmn of SF̃

where i = j and where i refers to the data symbol from a
rotated constellation. While an exhaustive search
considering all known QOSTBCs has not been performed,
all of the valid TED expressions obtained by the authors
were depended strictly on data from non-rotated
constellations. Thus, the corresponding estimation error
variance expressions were in all cases independent of φ. It
is possible, however, that there exist TED expressions
whose error variance is a function of φ.
Finally, using (22) and (23), we define the TED SNR as

SNRTED = E2 1̂{ }
s2
1̂

(33)
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3.3 TED examples

In this section, we consider two specific Nt = 4 QOSTBCs.
First, consider code X(q4a) defined by (1). More examples of
TED expressions can be found in [11, Chapter 6]. The
TEM function for X(q4a) can be obtained from the average
of the simple combining rule

1̂(q4a) = < a0z1 − a1z0
( )

= aR0z
R
1 − aI0z

I
1 − aR1z

R
0 + aI1z

I
0 (34)

The TED in (34) corresponds to S in (10) with βk = 0 ∀k,
α1 =−α2 = 1, nα,1 =mα,2 = 0, mα,1 = nα,2 = 1.
Substituting the values of S into (18) and carrying out the

matrix multiplications gives Γ in the form of

G(q4a) = 2

g1−1 − g11 0 0 −2g1−2

0 g1−1 − g11 2g1−2 0
0 −2g12 g1−1 − g11 0
2g12 0 0 g1−1 − g11

⎡
⎢⎢⎣

⎤
⎥⎥⎦
(35)

Examining Γ(q4a) in (35), we note that the matrix does not
fully satisfy the antisymmetry condition, and hence the
resulting TED will be quasi-robust, with the S-curve given by

E 1̂(q4a)

{ }
= 2r2 g1−1 − g11

( )+ EH d1̂(q4a)

{ }
(36)

and a TEM bias of

d1̂(q4a) = 2 H‖ ‖−2r2
∑Nr

j=1

2 g1−2 − g12
( )< h∗2jh3j + h∗1jh4j

( )[ ]
(37)

which, as explained in Section 3.1, is small.
To evaluate the TEM estimation variance, we solve

EH 1̂2
{ }

using (32) by first obtaining the components of SF̃
and SD̃, which in turn is done by computing 1̂2 from (34).
Squaring (34) will lead to SF̃ in the form of

SF̃ = F̃
RR
1100 + F̃

RR
0011 − 2F̃

RR
1010 + F̃

II
1100 + F̃

II
0011

− 2F̃
II
1010 − 2F̃

RI
1100 − 2F̃

RI
0011 + 2F̃

RI
1001 + 2F̃

RI
0110

(38)

where F̃
RR
ijmn, F̃

II
ijmn and F̃

RI
ijmn are defined by (25), (28) and

(31), respectively. Similarly, the quantity SD̃ for X(q4a) is
given by

SD̃ = D̃
RR
1100 + D̃

RR
0011 + D̃

II
1100 + D̃

II
0011 (39)

with D̃
RR
ijmn and D̃

II
ijmn defined by (26) and (29), respectively.

We note that since only indices of data drawn from the
non-rotated constellation are present, the variance for X(q4a)
will be independent of φ.
5
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As a second example, we consider a QOSTBC [9]

X(q4b) =
a1 −a∗2 a3 −a∗4
a2 a∗1 a4 a∗3
a3 −a∗4 a1 −a∗2
a4 a∗3 a2 a∗1

⎡
⎢⎢⎣

⎤
⎥⎥⎦ (40)

For the X(q4b), a quasi-robust TED can be formed using the
same expression as for (34), that is

1̂(q4b) = < a0z1 − a1z0
( )

(41)

One can show that the resulting Γ is given by

G(q4b) = 2

g1−1 − g11 0 g11 − g13 0
0 g1−1 − g11 0 g11 − g13

g1−3 − g1−1 0 g1−1 − g11 0
0 g1−3 − g1−1 0 g1−1 − g11

⎡
⎢⎢⎣

⎤
⎥⎥⎦

(42)

which corresponds to an S-curve given by

E 1̂(q4b)

{ }
= 2r2 g1−1 − g11

( )+ EH d1̂(q4b)

{ }
(43)

and a TEM bias of

d1̂(q4b) = 2 H‖ ‖−2r2

×
∑Nr

j=1

2 g11 − g1−1− g13 + g1−3

( )< h∗j1hj3+ h∗j2hj4

( )[ ]
(44)

The estimation variance for X(q4b) is computed in a manner
identical to that for X(q4a). Since the expression for 1̂(q4b) is
identical to that for 1̂(q4a), the components of SF̃ and SD̃
are the same, that is given by (38) and (39). We note that
the components of SF̃ and SD̃, which depend on the code
matrices A and B, will have different values.

Fig. 1 TED S-curve (Nt = 4, Nr = 1,4, SNR = 10, 20 dB)
6
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3.4 Properties of example TED

Fig. 1 shows the S-curve for 1̂(q4a). The results include the
data-aided, semi-analytical expression in (36), with the
expectation over the bias (37) computed numerically. We
verify the theoretical expression by means of simulation,
where the data were sampled with a fixed timing offset and
the receiver timing loop is disabled. The S-curve was
obtained by averaging 1̂ over all code blocks transmitted. In
addition, a simulated decision-directed S-curve was plotted
to evaluate the effects of incorrect data decisions. The effect
of data decision errors was evaluated by replacing the data
symbols in (34) by their corresponding data decisions for
SNR �Es/N0 = 10 dB and 20 dB, where �Es and N0 denote
the average symbol energy, and the noise power spectral
density, respectively. The simulations were done for Nr = 1
and Nr = 4 receive branches.
As indicated by Fig. 1, in the case of a data-aided TED, the

simulated results follow the theoretical expressions very
closely. By examining the decision-directed S-curve, we
note that the incorrect data decisions reduce the linear
estimation region to approximately |ε|/T≃ 0.20 for SNR
of 20 dB, with the range extended to |ε|/T≃ 0.30 with
increased diversity order. While the linear estimation range

Fig. 2 TED SNR (Nt = 4, Nr = 1, SNR = 10, 20 dB)

Fig. 3 TED SNR (Nt = 4, Nr = 4, SNR = 10, 20 dB)
IET Commun., pp. 1–11
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in Fig. 1 is sufficient for timing loop operation, it is
approximately 20% smaller than that for OSTBC TEDs [7].
This can be attributed to the use of approximate decision
variables in (7) in timing estimation.
Figs. 2 and 3 show the corresponding plots for TED SNR,

computed using (33), with Nr = 1 and Nr = 4 receive antennas,
respectively. The numerator in (33) was obtained using the
same methodology as the results in Fig. 1. For the
semi-analytical results, s2

1̂ was computed using (32) with
(38) and (39), with numerical averaging over H. In the case
of the simulated results (data-aided and decision-directed),
we average 1− 1̂( )2 over all code blocks transmitted, with
fixed, uncompensated timing error.
Examining Figs. 2 and 3, we note that, similarly to the

S-curve, the simulated DA and analytical results are in
close agreement. In the case of the data-decision operation,
we observe a drop in the TED-SNR corresponding to the
non-linear region of the S-curve. Comparing Figs. 2 and 3
to the corresponding results in [7] we find that the peak DD
TED SNR is 1.9 dB and 1.5 dB lower for �Es/N0 = 10 dB
and �Es/N0 = 20 dB, respectively, when comparing to TED
for Nt = 4 TED. Similarly to the reduction in S-curve
linearity, we attribute this performance degradation to the
decision variable perturbation in (8).
Finally, we should note that the property evaluated in Fig. 3

is the output SNR of the TED, which constitutes the input
SNR of the timing loop. Since the timing loop performs an
averaging operation by virtue of the loop filter and the
threshold device, the TED SNR will be significantly
increased by virtue of the integration process.

4 System simulations

We present the simulation results evaluating the tracking
performance of receiver employing the TED 1̂(q4a) applied to
QOSTBC in (1) with quadrature phase shift keying (QPSK)
modulation and an optimal rotation angle of φ = π/4 [9]. In
order to provide an accurate comparison to the results in [7],
the same simulation setup and parameters are used.
Specifically, we consider frequency-flat Rayleigh fading with
a normalised Doppler frequency of fDT = 0.01. It is assumed
that the receiver has performed coarse timing acquisition,
which would be typically done via a training sequence. The
timing drift was simulated by perturbing the sampling phase
τl, where the interval between timing slips, measured in
symbol intervals and denoted by Nτ, was modelled by a
Gaussian random variable, with a mean of �N t and a variance
s2
Nt

= 0.1�N t. The drift direction was random and
equiprobable, and the step size was fixed to T/16. The mean
normalised timing error bandwidth is thus given by

�BtT = T/16
�N tT

= 1

16�N t

The timing estimation was done using the TED given by
(34). Since the focus of the investigation is to track the
performance of the detector, the timing estimation was
done without the data knowledge at the receiver. Hence
the data symbols am in (34) were replaced by their
estimates âm. The timing error estimate for code block l,
that is 1̂l, was passed through a first-order, IIR, timing
loop filter with the output of

1̂′l = a1̂′l−1 + (1− a)1̂l
IET Commun., pp. 1–11
doi: 10.1049/iet-com.2012.0244
where the loop constant α = 0.9. When 1̂′l exceeded a
threshold value εth = 0.25, the timing correction t̂l was
adjusted by a fraction of the symbol interval T/8,
according to the polarity of the error estimate. In practice,
this can be implemented using a bank of polyphase filters
[12].
To evaluate the sensitivity of the algorithm on channel

estimation errors, as outlined in Section 2.1, we include the
results of PSAM transmission with orthogonal pilots,
inserted every four OSTBC data blocks. Wiener
interpolation filter with nine interpolants was used.
Fig. 4 presents the SER performance using timing drift

bandwidth. The state-of-the-art temperature compensated
crystal oscillators have a frequency stability of well
under 10 ppm, corresponding to �BtT , 10−5 [13]. �BtT =
10−4. The results for channel state information at the
receiver (CSIR) and PSAM receivers are presented, in
addition to reference curves for perfect channel and
timing estimation, and perfect timing with PSAM
channel estimation.
The results demonstrate that the CSIR receiver, which

was assumed in the TED design process, is able to track
the timing variation with a performance drop of
approximately 0.5 dB. Comparing with the results for

Fig. 4 QPSK SER performance (Nt = 4, Nr = 1,4, BτT = 10− 4)

Fig. 5 QPSK SER performance against timing drift bandwidth
(Nt = 4, Nr = 2)
7
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OSTBC in [7], this represents a loss of approximately 0.2
dB. In the case of PSAM receiver, the SER performance
exhibits degradation in the high SER region, not reported
for OSTBC in [7]. In the case of QOSTBC results in
Fig. 4, by observing the reference curves for perfect
timing with PSAM channel estimation, we note that the
TED performance is sensitive to the channel estimation
errors. Since the performance for the CSIR receiver is
very good, we conclude that improved channel estimation
technique should be considered.
With the aim of determining the tracking capabilities of the

proposed receiver for varying rates of timing drift, we now
consider SER performance as a function of BτT. Figs. 5 and
6 show the results for Nr = 2 and Nr = 4 receivers,
respectively, both with CSIR and PSAM.
We note that in the case of CSIR, the timing loop tracks

the timing drift up to BτT≃ 10−3, at which point we
observe a steep increase in the SER as a result of bursts
of errors due to loss of synchronisation. The presence of
the channel estimation errors in PSAM causes a reduction
in the tracking range to BτT≃ 4 × 10−3. Comparing these
results with those reported for OSTBC in [7], we note
that the errors introduced by the decision variables
perturbation in (8) act to reduce the tracking range, with
the effect being more pronounced for PSAM, where for
Nt = 2 the loss of synchronisation drops from BτT≃ 10−3

to BτT≃ 4 × 10−3.

5 Conclusion

We have presented the design and analysis of QOSTBC
TEDs, showing that a low-complexity timing
measurement can be obtained by operating on data
symbols and approximate decision variables. The
S-curve, estimation variance and TED SNR were solved
under ideal conditions of perfect data and channel state
knowledge at the receiver. The simulation results were
used to analyse the above properties with decision errors,
and to evaluate the system performance including the
effects of channel estimation. SER results showed a
timing synchronisation loss of CSIR under 0.5 dB.
Simulations revealed that the receiver is able to track
timing drift bandwidth of BτT ≃ 10−3 and BτT ≃ 4 × 10−3

for CSIR and PSAM, respectively.

Fig. 6 QPSK SER performance against timing drift bandwidth
(Nt = 4, Nr = 4)
8
& The Institution of Engineering and Technology 2013
6 Acknowledgment

The author wishes to thank Professor (Emeritus) Peter
J. McLane for his invaluable input during the early stages
of this work. Portions of this work were presented at
Wireless Communications and Networking Conference
(WCNC), 2007.

7 References

1 Dmochowski, P.A., McLane, P.J.: ‘Timing synchronization for
quasi-orthogonal space–time block coding receivers’. Proc. IEEE
Wireless Communications and Networking Conf. (WCNC),
September 2007, pp. 1166–1171

2 Naguib, A.F., Tarokh, V., Seshadri, N., Calderbank, R.: ‘A space–time
coding modem for high-data-rate wireless communications’, IEEE
J. Sel. Areas Commun., 1998, 16, (8), pp. 1459–1478

3 Wu, Y.-C., Chan, S.C., Serpedin, E.: ‘Symbol-timing synchronization in
space–time coding systems using orthogonal training sequences’. Proc.
IEEE WCNC, March 2004, pp. 1205–1209

4 Rajawat, K., Chaturvedi, A.K.: ‘A low complexity symbol timing
estimator for MIMO systems using two samples per symbol’, IEEE
Commun. Lett., 2006, 10, (7), pp. 525–527

5 Li, X., Wu, Y.-C., Serpedin, E.: ‘Timing synchronization in
decode-and-forward cooperative communication systems’, IEEE
Trans. Signal Process., 2009, 57, (4), pp. 1444–1455

6 Wang, C.-L., Wang, H.-C.: ‘Optimized joint fine timing synchronization
and channel estimation for MIMO systems’, IEEE Trans. Commun.,
2011, 59, (4), pp. 1089–1098

7 Dmochowski, P.A., McLane, P.J.: ‘Timing error detector design and
analysis for orthogonal space–time block code receivers’, IEEE Trans.
Commun., 2008, 56, (11), pp. 1939–1949

8 Tarokh, V., Jafarkhani, H., Calderbank, A.R.: ‘Space–time block codes
from orthogonal designs’, IEEE Trans. Inf. Theory, 1999, 45, pp.
1456–1467

9 Jafarkhani, H.: ‘Space–time coding – theory and practice’ (Cambridge
University Press, New York, 2005)

10 Ganesan, G., Stoica, P.: ‘Space–time block codes: a maximum SNR
approach’, IEEE Trans. Inf. Theory, 2001, 47, (4), pp. 1650–1656

11 Dmochowski, P.A.: ‘Timing synchronization for multiple input multiple
output communication system’. PhD thesis, Queen’s University,
Kingston, ON, Canada, 2006

12 Harris, F.J., Rice, M.: ‘Multirate digital filters for symbol timing
synchronization in software defined radios’, IEEE J. Sel. Areas
Commun., 2001, 19, (12), pp. 2346–2357

13 Zhou, W., Zhou, H., Xuan, Z., Zhang, W.: ‘Comparison among
precision temperature compensated crystal oscillators’. Proc. IEEE Int.
Frequency Control Symp. and Exposition, August 2005, pp. 575–579

14 Horn, R.A., Johnson, C.R.: ‘Topics in matrix analysis’ (Cambridge
University Press, 1991)

8 Appendix 1

8.1 TED variance

We derive the expression for EH ãRi ã
R
j z̃

R
m z̃

R
n

{ }
in (24) used in

computing the estimation error variance for TED in (9). The

equivalent solutions for EH ãIi ã
I
j z̃

I
mz̃

I
n}

{
and EH ãRi ã

I
j z̃

R
m z̃

I
n

{ }
can easily be obtained using the same methodology as
presented herein. The derivation is an adaptation of that for
OSTBC [7], with additional complexity due to the rotation
of data symbols. For more details, the readers are referred
to [11].
We begin by expanding EH ãRi ã

R
j z̃

R
m z̃

R
n

{ }
using (5) and (7).

Using the fact that tr(A)tr(B) = tr(A⊗B) [14, p.250], we have
IET Commun., pp. 1–11
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www.ietdl.org

the solution given by

EH ãRi ã
R
j z̃

R
mz̃

R
n

{ }
= ‖H‖−4EH

{
ãRi ã

R
j

× tr
∑
l

AmG
H
1,l< X̃

H
l H

HH
( )[

⊗
∑
l′

AnG
H
1,l′< X̃

H
l′ H

HH
( )

+ Am< NHH
( )⊗ An< NHH

( )
+
∑
l

AmG
H
1,l< X̃

H
l H

HH
( )

⊗ An< NHH
( )

+ Am< NHH
( )

⊗
∑
l

AnG
H
1,l< X̃

H
l H

HH
( )]}

(45)

We note that the expectation of the last two arguments of the
trace operator in (45) is zero, since the noise is assumed to be
zero-mean and independent of data and code blocks X̃l. Thus,
we can simplify (45) to

EH ãRi ã
R
j z̃

R
mz̃

R
n

{ }
= ‖H‖−4EH ãRi ã

R
j tr C̃

RR
X + C̃

RR
N

( ){ }
(46)

where C̃
RR
X and C̃

RR
N are defined by

C̃
RR
X =

∑
l

AmG
H
1,l< X̃

H
l H

HH
( )

⊗

×
∑
l′

AnG
H
1,l′< X̃

H
l′ H

HH
( )

(47)

and

C̃
RR
N = Am< NHH

( )⊗ An< NHH
( )

(48)

For zero mean data, the expectation of the term in (46)

involving C̃
RR
X will contribute only to l = l′ summation
IET Commun., pp. 1–11
doi: 10.1049/iet-com.2012.0244
terms. We can thus write

EH ãRi ã
R
j tr C̃

RR
X

( ){ }
= tr

∑
l

AmG
H
1,l ⊗ AnG

H
1,l

( ){

× EH ãRi ã
R
j < X̃

H
l H

HH
( ){

⊗< X̃
H
l H

HH
( )}}

(49)

which can be further expanded resulting in

EH ãRi ã
R
j tr C̃

RR
X

( ){ }
= tr

∑
l

AmG
H
1,l ⊗ AnG

H
1,l

( ){

× EH ãRi ã
R
j < X̃

H
l

( )
⊗< X̃

H
l

( )( )[{
×VRR + ℑ X̃

H
l

( )
⊗ ℑ X̃

H
l

( )( )
VII

− < X̃
H
l

( )
⊗ ℑ X̃

H
l

( )( )
VRI

− ℑ X̃
H
l

( )
⊗ < X̃

H
l

( )( )
VIR

]}}

(50)

with Ωij given by

VRR = < HHH
( )⊗ < HHH

( )
VII = ℑ HHH

( )⊗ ℑ HHH
( )

VRI = < HHH
( )⊗ ℑ HHH

( )
VIR = ℑ HHH

( )⊗< HHH
( )

(51)

We note that unlike in the case of OSTBC TED variance in
[7], where we could disregard the terms involving ΩRI

and ΩIR due to the constellation rotation, the last two
terms in (50) will not average out to zero. Using the
OSTBC encoding formulation of (3), we expand (50),
giving (see (52))
We now consider cases where i≠ j and i = j. Since

E
{
ãRi ã

R
j

} = 0 for i≠ j, in such a case only l = 0 with {k = i,
k′ = j} and {k = j, k′ = i} terms will result in non-zero
EH ãRi ã
R
j tr C̃

RR
X

( ){ }
= tr

∑
l

AmG
H
1,l ⊗ AnG

H
1,l

( ){

× EH ãRi ã
R
j

∑Ns−1

k=0

ãRk,lA
H
k ⊗

∑Ns−1

k′=0

ãRk′,lA
H
k ′

( ){
VRR

+ ãRi ã
R
j

∑Ns−1

k=0

ãIk,lB
H
k ⊗

∑Ns−1

k′=0

ãIk′,lB
H
k ′

( )
VII

+ ãRi ã
R
j

∑Ns−1

k=0

ãRk,lA
H
k ⊗

∑Ns−1

k′=0

ãIk′,lB
H
k ′

( )
VRI

+ ãRi ã
R
j

∑Ns−1

k=0

ãIk,lB
H
k ⊗

∑Ns−1

k′=0

ãRk′,lA
H
k ′

( )
VIR

}}
(52)
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expectation. Thus, it can be expressed as

E ãRi
( )2

ãRj

( )2{ }
AH
i ⊗ AH

j + AH
j ⊗ AH

i

( )
VRR

+ E ãRi ã
R
j ã

I
i ã

I
j

{ }
BH
i ⊗ BH

j + BH
j ⊗ BH

i

( )
VII

+ E (ãRi )
2ãRj ã

I
j

{ }
AH
j ⊗ BH

i

( )
VRI + BH

i ⊗ AH
j

( )
VIR

( )

+ E ãRj

( )2
ãRi ã

I
i

{ }
AH
i ⊗ BH

j

( )
VRI + BH

j ⊗ AH
i

( )
VIR

( )}
(53)

For independent and zero mean data, for which E ãRi ã
I
i

{ } = 0
and using (13) to define ρ2, (53) results in

EH ãRi ã
R
j tr C̃

RR
X

( ){ }
= r22tr AmG

H
1,0⊗AnG

H
1,0

( ){
× AH

j ⊗AH
i +AH

i ⊗AH
j

( )
VRR

}
i= j

(54)

We note that for i≠ j, E
{
ãRi ã

R
j tr C̃

RR
X

( )}
is independent of the

QOSTBC rotation angle φ.
In the case when i = j in (52), only terms for k = k′ will

contribute to the summation. Thus, again using (3), one can
express (52) for i = j by

EH ãRi
( )2

tr C̃
RR
X

( ){ }
= tr

∑
l

∑Ns−1

k=0

AmG
H
1,l ⊗AnG

H
1,l

( ){
×

+E ãRi
( )2

ãRk,l
( )2{ }

AH
k ⊗AH

k

( )
VRR

+E ãRi
( )2

ãIk,l
( )2{ }

BH
k ⊗BH

k

( )
VII

+E ãRi
( )2

ãRk,l
( )

ãIk,l
( ){ }

× AH
k ⊗BH

k

( )
VRI+ BH

k ⊗AH
k

( )
VIR

( )}

(55)

We first consider the case where l≠ 0 or l = 0, k≠ i. Referring
10
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to the three summation terms in (55), we note that

E ãRi
( )2

ãRk,l
( )2{ }

= r22f = r22 l= 0, {l= 0, k = i}

E ãRi
( )2

ãIk,l
( )2{ }

= r22f = r22 l= 0, {l= 0, k = i}

E ãRi
( )2

ãRk,l ã
I
k,l

{ }
= 0 l= 0, {l= 0, k = i}

(56)

where we have defined

r2fWE ãRi
( )2{ }

(57)

The equivalence of ρ2φ and ρ2 can easily be shown using (2)
[11]. For l = 0 and k = i, we have

E ãRi
( )2

ãRk,l
( )2{ }

= E ãRi
( )4{ }

Wr4f

E ãRi
( )2

ãIk,l
( )2{ }

= E ãRi
( )2

ãIi
( )2{ }

Wr′2f

E ãRi
( )2

ãRk,l
( )

ãIk,l
( ){ }

= E ãRi
( )3

ãIi

{ }
Wr′′f

(58)

The constants ρ4φ, r
′
2f and r′′f have been evaluated for M-PSK

constellations in [11]. After some algebraic manipulation,
(55) can be expressed as (see (59))
Having considered the data component of (46), we now

focus on the noise term involving C̃
RR
N , that is

EH ãRi ã
R
j tr C̃

RR
N

( ){ }
=

EH ãRi ã
R
j tr Am< NHH

( )⊗ An< NHH
( ){ }{ }

(60)

We note that, since E
{
ãRi ã

R
j

} = 0 for i≠ j, we need to
consider only the case for i = j. Furthermore, since

E
{
ãRi
( )2} = E

{
aRi
( )2} = r2, (60) will result in the same

solution as for the OSTBC derived in [7], that is

EH ãRi
( )2

tr C̃
RR
N

( ){ }
=

r2
N0

2
tr Am ⊗ An

( )
LN V′

RR +V′
II

( ){ }
(61)
EH ãRi
( )2

tr C̃
RR
X

( ){ }
= r22tr

∑
l

∑
k

AmG
H
1,l ⊗ AnG

H
1,l

( ){

× AH
k ⊗ AH

k

( )
VRR + BH

k ⊗ BH
k

( )
VII

[ ]}

+ tr

{
AmG

H
1,0 ⊗ AnG

H
1,0

( )
× r4f − r22

( )
AH
i ⊗ AH

i

( )
VRR

[
+ r′2f − r22

( )
BH
i ⊗ BH

i

( )
VII

+r′′f AH
i ⊗ BH

i

( )
VRI + BH

i ⊗ AH
i

( )
VIR

( )]}
(59)
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where ΛN is defined by

LN (i, j) = 1, i = nNr + n+ 1, j = mNc + m+ 1
0, elsewhere

{
(62)

for n = 0, …, Nr − 1 and m = 0, …, Nc − 1. In (61) V′
ij are

given by

V′
RR = <(H)⊗ <(H)

V′
II = ℑ(H)⊗ ℑ(H)

V′
RI = <(H)⊗ ℑ(H)

V′
IR = ℑ(H)⊗<(H)

(63)
IET Commun., pp. 1–11
doi: 10.1049/iet-com.2012.0244
Finally, combining (54), (59) and (61) with (46), we obtain

the solution to EH ãRi ã
R
j z̃

R
mz̃

R
n

{ }
, given by

EH ãRi ã
R
j z̃

R
mz̃

R
n

{ }
= ‖H‖−4tr r22F̃

RR
ijmn + r2

N0

2
D̃

RR
ijmn

{ }
(64)

where F̃
RR
ijmn and D̃

RR
ijmn are given by (25) and (26),

respectively.
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